
C
oa

st
al

an
d

H
yd

ra
ul

ic
s

La
bo

ra
to

ry
E

R
D

C
/C

H
L

TR
-#

#-
##

US Army Corps
of Engineers R○

Engineering Research and
Development Center

Fload & Coastal/NavSys/M.E. 6.2

Flexible Scientific Software Distribution with
Hashdist

D. S. Seljebotn, O. Čertík, A. R. Terrel, A. J. Ahmadia
and C. E. Kees

November 20, 2013

Approved for public release; distribution is unlimited.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 NOV 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Flexible Scientific Software Distribution with Hashdist

5a. CONTRACT NUMBER
W911NF-12-1-0604

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Simula Innovation AS,P.O. Box 134,1325 Lysaker, Norway,

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Engineer Research & Development Center -International Research
Office, ERDC-IRO, ATTN: Richmond, Unit 4507, APO, AE, 09421

10. SPONSOR/MONITOR’S ACRONYM(S)
1535-EN-01

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Complex scientific software is often built on ?distributions?, or ?stacks? of software. Particulary as
scientists and engineers work toward more integrated and therefore more interdependennt, scientific
software, they need the ability to setup scientific stacks in many different user and hardware environments
and hardware. Scientific stacks must be reproducible in the sense that ?regular? users should be able to
install them and have them work as advertised. These stacks also need to work in challenging
environments like cutting edge high performance commputers and handheld devices. Due to the authors?
separate but similar experiences of the difficulty of buiding and maintaining scientific software stacks to
support our own work, we worked together to build Hashdist, which is a a tool for building and managing
custom software distributions based on a functional approach. It employs cryptographic hashing methods
related to what are used in highly successful software source version control system to bring the same
robustness to building and developing complex scientific software stacks.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Fload & Coastal/NavSys/M.E. 6.2 ERDC/CHL TR-##-##
November 20, 2013

Flexible Scientific Software Distribution with
Hashdist

D. S. Seljebotn
Simula Innovation AS
P.O. Box 134
1325 Lysaker, Norway

O. Čertík
Physics and Chemistry of Materials, T-1
Theoretical Division, MS B258
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

A. R. Terrel
Computational Hydraulics Group
1 University Station, C0200
The University of Texas at Austin
Austin, TX 78712

A. J. Ahmadia and C. E. Kees
Coastal and Hydraulics Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final Report
Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under 7CJ429,LGBK72,622HK4,W911NF-12-1-0604

ERDC/CHL TR-##-## ii

Abstract: Complex scientific software is often built on “distributions”, or “stacks”,
of software. Particulary as scientists and engineers work toward more integrated,
and therefore more interdependennt, scientific software, they need the ability to
setup scientific stacks in many different user and hardware environments and
hardware. Scientific stacks must be reproducible in the sense that “regular” users
should be able to install them and have them work as advertised. These stacks also
need to work in challenging environments like cutting edge high performance
commputers and handheld devices. Due to the authors’ separate but similar ex-
periences of the difficulty of buiding and maintaining scientific software stacks
to support our own work, we worked together to build Hashdist, which is a a tool
for building and managing custom software distributions based on a functional
approach. It employs cryptographic hashing methods related to what are used in
highly successful software source version control system to bring the same robust-
ness to building and developing complex scientific software stacks.

Disclaimer: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited
are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army
position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC/CHL TR-##-## iii

Contents
Preface... iv

1 Introduction ... 1

2 User’s guide to Hashdist v. 0.2.. 2

2.1 Installing and making the hit tool available.. 2
2.2 Setting up your software profile .. 2
2.3 Hashstack: collection of software profiles ... 3
2.4 Debug features... 4
2.5 Developing the base profile ... 5
2.6 Further details .. 5

3 Specifying a Hashdist software profile... 6

3.1 Profile specification ... 6
3.2 Package specifications... 8
3.3 Conditionals... 10
3.4 Stage system ... 11
3.5 Conclusions... 12

ERDC/CHL TR-##-## iv

Preface

This report and the accompanying open source software are products of the
Military Engineering 6.2 program, the Flood and Coastal Research and De-
velopment Program, the Navigation Systems Research Program, and the Inter-
national Research Office, in collaboration with Simula Innovation, the Univer-
sity of Texas at Austin, and the Oak Ridge Institute for Science and Education.
General supervision was provided by Mr. Jose E. Sanchez, Director, CHL; Dr.
Charles A. Randall and Dr. Cary E. Talbot were project managers for this effort.
Dr. David A. Horner was the Technical Director for Military Engineering and
COL Jeffrey Eckstein was Commander and Executive Director of the Engineer
Research and Development Center. Dr. Jeffrey P. Holland was Director.

ERDC/CHL TR-##-## 1

1 Introduction

Hashdist is a platform independent package manager that builds from source.
The core of the Hashdist library is the hit command line tool, which man-
ages building of packages and installation of profiles. A profile is a collection of
packages.

Each package has a cryptographic hash calculated using all inputs that are needed
to build such a package (the package source code, the upstream package depen-
dencies, and the configuration and build commands). As such, similar to how
the version control system git hashes snapshots of the history of a source code
project, a given package hash in hashdist uniquely identifies the package ver-
sion in the history of building a software stack. Because the output of a config-
ure/build process depends on the source, their exact dependencies, their versions
and many possible compiler or build options, hashdist hashes all of these inputs
to identify the output of the build process uniquely.

Changing a build script of any package, source code tarball, or dependencies
will result in a different hash, thus all packages that depend on it will get re-
built. Once packages are built, they are stored in an artifact cache according to
the hashdist package hash, so reverting the change results in instantenious build
of the older version.

Besides the Hashdist program, we also provide a Hashstack repository with
collection of software profiles that build on Linux, Mac, Windows and vari-
ous clusters. Hashstack is distributed separately from Hashdist, so that users
can easily provide or use their own collection of software profiles. That being
said, Hashstack’s goal is to provide most of the various Python Scientific pack-
ages that build using most of the various configurations that people use, so most
users will probably just use Hashstack directly, or with minor modifications.
Hashstack’s goal is to be able to optionally reuse highly optimized libraries in-
stalled on a given cluster (BLAS, LAPACK, MPI, ...).

ERDC/CHL TR-##-## 2

2 User’s guide to Hashdist v. 0.2

2.1 Installing and making the hit tool available

Hashdist requires Python 2.7 and git.

To start using Hashdist, clone the repo that contains the core tool, and put the
bin-directory in your PATH:

$ git clone https://github.com/hashdist/hashdist.git

$ cd hashdist

$ export PATH=$PWD/bin:$PATH

The hit tool should now be available. You should now run the following com-
mand to create the directory ~/.hashdist:

$ hit init-home

By default all built software and downloaded sources will be stored beneath
~/.hashdist. To change this, edit ~/.hashdist/config.yaml.

2.2 Setting up your software profile

Using Hashdist is based on the following steps:

1. First, describe the software profile you want to build in a configuration file
(“I want Python, NumPy, SciPy”).

2. Use a dedicated git repository to manage that configuration file

3. For every git commit, Hashdist will be able to build the specified profile,
and cache the results, so that you can jump around in the history of your
software profile.

Start with cloning a basic user profile template:

ERDC/CHL TR-##-## 3

git clone https://github.com/hashdist/profile-template.git /path/to/myprofile

The contents of the repo is a single file default.yaml which a) selects a
base profile to extend, and b) lists which packages to include. It is also possible
to override build parameters from this file, or link to extra package descriptions
within the repository (docs not written yet). The idea is to modify this reposi-
tory to make changes to the software profile that only applies to you. You are
encouraged to submit pull requests against the base profile for changes that may
be useful to more users.

To build the stack, simply do:

cd /path/to/myprofile

hit build

This will take a while, including downloading the source code needed. In the
end, a symlink default is created which contains the exact software described
by default.yaml.

Now, try to remove the jinja2 package from default.yaml and do hit

build again. This time, the build should only take a second, which is the time
used to assemble a new profile.

Then, add the jinja2 package again and run hit build. This exact soft-
ware profile was already built, and so the operation is very fast.

When coupled with managing the profile specification with git, this becomes
very powerful, as you can use git to navigate the history of or branches of your
software profile repository, and then instantly switch to pre-built versions. [TODO:
hit commit, hit checkout commands.]

Finally, if you want to have, e.g., release and debug profiles, you can create
release.yaml and debug.yaml, and use the -p flag to hit to select an-
other profile than default.yaml to build.

2.3 Hashstack: collection of software profiles

Hashstack is a collection of software profiles that builds on various architectures
(Linux, Windows, Mac, clusters, ...) and allows optional reuse of system-wide
packages (compilers, Lapack, Python, ...).

ERDC/CHL TR-##-## 4

To build these profiles, you need the hit tool from Hashdist. Make sure that
the hit command is in your path. To install the ’cloud.sagemath.yaml’ profile
from Hashstack (that will work on Linux), do:

git clone https://github.com/hashdist/hashstack2

cd hashstack2

cp cloud.sagemath.yaml default.yaml

hit build

You can now for example run the IPython Notebook as follows:

default/bin/ipython notebook

On a Mac, you can create a profile by inheriting the homebrew.yaml profile.

2.4 Debug features

A couple of commands allow you to see what happens when building.

∙ Show the script used to build Jinja2:

hit show script jinja2

∙ Show the “build spec” (low-level magic):

hit show buildspec jinja2

∙ Get a copy of the build directory that would be used:

hit bdir jinja2 bld

This extracts Jinja2 sources to bld, puts a Bash build-script in bld/_hashdist/build.sh.
However, if you go ahead and try to run it the environment will not be the same
as when Hashdist builds, so this is a bit limited so far. [TODO: hit debug

which also sets the right environment and sets the $ARTIFACT directory.]

ERDC/CHL TR-##-## 5

2.5 Developing the base profile

If you want to develop the hashstack2 repository yourself, using a dedicated
local-machine profile repo becomes tedious. Instead, copy the default.example.yaml
to default.yaml. Then simply run hit build directly in the base profile
(in which case the personal profile is not needed at all).

default.yaml is present in .gitignore and changes should not be checked
in; you freely change it to experiment with whatever package you are adding.
Note the orthogonality between the two repositories: The base profile repo has
commits like “Added build commands for NumPy 1.7.2 to share to the world”.
The personal profile repo has commits like “Installed the NumPy package on
my computer”.

2.6 Further details

Specifying a Hashdist software profile

ERDC/CHL TR-##-## 6

3 Specifying a Hashdist software profile

There are specification file types in Hashdist. The profile spec describes what
to build; what packages should be included in the profile and the options for
each package. A package spec contains the how part: A (possibly parametrized)
description for building a single package.

The basic language of the specification files is YAML, see http://yaml.org. Style
guide: For YAML files within the Hashdist project, we use 2 space indents, and
no indent before vertically-formatted lists (as seen below).

3.1 Profile specification

The profile spec is what the user points the hit tool to to build a profile. By
following references in it, Hashdist should be able to find all the information
needed (including the package specification files). An example end-user profile
might look like this:

extends:

- name: hashstack

urls: [’https://github.com/hashdist/hashstack2.git’]

key: ’git:5042aeaaee9841575e56ad9f673ef1585c2f5a46’

file: debian.yaml

- file: common_settings.yaml

parameters:

debug: false

packages:

zlib:

szlib:

nose:

python:

host: true

mpi:

use: openmpi

numpy:

ERDC/CHL TR-##-## 7

skip: true

package_dirs:

- pkgs

- base

hook_import_dirs:

- base

extends:

Profiles that this profile should extend from. Essentially this profile is
merged on a parameter-by-parameter and package-by-package basis.
If anything conflicts there is an error. E.g., if two base profiles sets the
same parameter, the parameter must be specified in the descendant pro-
file, otherwise it is an error.

There are two ways of importing profiles:

∙ Local: Only provide the file key, which can be an absolute path, or
relative to the directory of the profile spec file.

∙ Remote: If urls (currently this must be a list of length

one) and key are given, the specified sources (usually a git commit) will
be downloaded, and the given file is relative to the root of the repo. In
this case, providing a name for the repository is mandatory; the name is
used to refer to the repository in error messages etc., and must be unique
for the repository across all imported profile files.

parameters:

Global parameters set for all packages. Any parameters specified in the
packages section will override these on a per-package basis.

Parameters are typed as is usual for YAML documents; variables will
take the according Python types in expressions/hooks. E.g., false shows
up as False in expressions, while ’false’ is a string (evaluating to
True in a boolean context).

packages:

ERDC/CHL TR-##-## 8

The packages to build. Each package is given as a key in a dict, with
a sub-dict containing package-specific parameters. This is potentially
empty, which means “build this package with default parameters”. If a
package is not present in this section (and is not a dependency of other
packages) it will not be built. The use parameter makes use of a differ-
ent package name for the package given, e.g., above, package specs for
openmpi will be searched and built to satisfy the mpi package. The
skip parameter says that a package should not be built (which is useful
in the case that the package was included in an ancestor profile).

package_dirs:

Directories to search for package specification files (and hooks, see sec-
tion on Python hook files below). These acts in an “overlay” manner. In
the example above, if one e.g., if searching for python_package.yaml
then first the pkgs sub-directory relative to the profile file will be con-
sulted, then base, and finally any directories listed in package_dirs in
the base profiles extended in extends.

This way, one profile can override/replace the package specifications of
another profile by listing a directory here.

The common case is that base profiles set package_dirs, but that over-
riding user profiles do not have it set.

hook_import_dirs:

Entries for sys.path in Python hook files. Relative to the location of
the profile file.

3.2 Package specifications

Below we assume that the directory pkgs is a directory listed in package_dirs
in the profile spec. We can then use:

∙ Single-file spec: pkgs/mypkg.yaml

∙ Multi-file spec: pkgs/mypkg/mypkg.yaml, pkgs/mypkg/somepatch.diff,
pkgs/mypkg/mypkg-linux.yaml

ERDC/CHL TR-##-## 9

In the latter case, all files matching mypkg/mypkg.yaml and mypkg/mypkg-*.yaml

are loaded, and the when clause evaluated for each file. An error is given if
more than one file matches the given parameters. One of the files may lack the
when clause (conventionally, the one without a dash and a suffix), which corre-
sponds to a default fallback file.

Also, Hashdist searches in the package directories for mypkg.py, which spec-
ifies a Python module with hook functions that can further influence the build.
Documentation for the Python hook system is TBD, and the API tentative. Ex-
amples in base/autotools.py in the Hashstack repo.

Examples of package specs are in https://github.com/hashdist/hashstack2, and
we will not repeat them here, but simply list documentation on each clause.

In strings; {{param_name}} will usually expand to the parameter in ques-
tion while assembling the specification needed, and are expanded before artifact
hashes are computed. Expansions of the form ${FOO} are expanded at build-
time (by the Hashdist build system or the shell, depending on context), and the
variable name is what is hashed.

when:

Conditions for using this package spec, see rules above. It is a Python
expression, evaluated in a context where all parameters are available as
variables

extends:

A list of package names. The package specs for these base packages will
be loaded and their contents included, as documented below.

sources:

Sources to download. For now, this should be a list with a single item,
as implementing a target attribute is TBD.

dependencies:

ERDC/CHL TR-##-## 10

Lists of names for packages needed during build (build sub-clause) or in
the same profile (run sub-clause). Dependencies from base packages are
automatically included in these lists, e.g., if python_package is listed
in extends, then python_package.yaml may take care of requiring
a build dependency on Python.

build_stages:

Stages for the build. See Stage system section below for general com-
ments. The build stages are ordered and then executed to produce a Bash
script to run to do the build; the handler attribute (which defaults to
the value of the name attribute) determines the format of the rest of the
stage.

when_build_dependency:

Environment variable changes to be done when this package is a build
dependency for another package. As a special case variable ${ARTIFACT}

profile_links:

A small DSL for setting up links when building the profile. What links
should be created when assembling a profile. (In general this is dark
magic and subject to change until documented further, but usually only
required in base packages.)

3.3 Conditionals

The top-level when in each package spec has already been mentioned. In addi-
tion, there are two forms of local conditionals withi a file. The first one can be
used within a list-of-dicts, e.g., in build_stages and similar sections:

- when: platform == ’linux’

name: configure

extra: [--with-foo]

- when: platform == ’windows’

name: configure

extra: [--with-bar]

ERDC/CHL TR-##-## 11

The second form takes the form of a more traditional if-test:

- name: configure

when platform == ’linux’:

extra: [--with-foo]

when platform == ’windows’:

extra: [--with-bar]

when platform not in (’linux’, ’windows’):

extra: [--with-baz]

The syntax for conditional list-items is a bit awkward, but available if necesarry:

dependencies:

build:

- numpy

- when platform == ’linux’: # ! note the dash in front

- openblas

- python

This will turn into either [numpy, python] or [numpy, openblas,

python]. The “extra” - is needed to maintain positioning within the YAML
file.

3.4 Stage system

The build_stages, when_build_dependency and profile_links clauses all fol-
low the same format: A list of “stages” that are partially ordered (using name,
before, and after attributes). Thus one can inherit a set of stages from the base
packages, and only override the stages one needs.

There’s a special mode attribute which determines how the override happens.
E.g.,:

- name: configure

mode: override # !!

foo: bar

will pass an extra foo: bar attribute to the configure handler, in addition
to the attributes that were already there in the base package. This is the default
behaviour. On the other hand,:

ERDC/CHL TR-##-## 12

- name: configure

mode: replace # !!

handler: bash

bash: |

./configure --prefix=$ARTIFACT

entirely replaces the configure stage of the base package. Finally,:

- name: configure

mode: remove # !!

removes the stage.

3.5 Conclusions

HashDist and HashStack are unique packages in the scientific community today.
They address persistant barriers to the progress of computational science and
engineering, particularly barriers to reproducibility in large-scale calculations
and barriers to sharing and integrating development efforts across groups and
institutions.

	Preface
	Introduction
	User's guide to Hashdist v. 0.2
	Installing and making the hit tool available
	Setting up your software profile
	Hashstack: collection of software profiles
	Debug features
	Developing the base profile
	Further details

	Specifying a Hashdist software profile
	Profile specification
	Package specifications
	Conditionals
	Stage system
	Conclusions

